PET measurement of changes in D2/D3 dopamine receptor binding in a nonhuman primate during chronic deep brain stimulation of the bed nucleus of the stria terminalis

Nicholas T. Vandeheya, P. Charles Garellb, Joseph A. Hampelc, Dhanabalan Murali, Elizabeth M. Smitha, Richard Davidsonc, Alexander K. Conversec, R. Jerry Nicklesa, Bradley T. Christiana, c,∗

a University of Wisconsin-Madison, Department of Medical Physics, United States
b New York Medical College, Department of Neurosurgery, United States
c University of Wisconsin-Madison, Waisman Laboratory for Brain Imaging and Behavior, United States

PET imaging is a powerful tool for measuring physiological changes in the brain during deep brain stimulation (DBS). In this work, we acquired five PET scans using a highly selective D2/D3 dopamine antagonist, 18F-fallypride, to track changes in dopamine receptor availability, as measured by the distribution volume ratio (DVR), through the course of DBS in the bed nucleus of the stria terminalis (BNST) in a nonhuman primate.

Methods: PET scans were performed on a rhesus monkey with unilateral BNST stimulation during periods of baseline, chronic high frequency (130 Hz) and low frequency (50 Hz) DBS stimulation, and during a washout period between stimulation periods. A final scan was performed with the electrode stimulation starting 110 min into the scan. Whole brain parametric images of 18F-fallypride DVR were calculated for each condition to track changes in both striatal and extrastriatal D2/D3 availability.

Results: The monkey displayed significant increases in receptor binding throughout the brain during DBS relative to baseline for 130 and 50 Hz, with changes in DVR of: caudate 42%, 51%; putamen 56%, 57%; thalamus 33%, 49%; substantia nigra 29%, 26%; and prefrontal cortex 28%, 56%, respectively. Washout and post-stimulation scans revealed DVR values close to baseline values. Activating the stimulator midway through the final scan resulted in no statistically significant changes in binding.

Conclusions: PET neuroligand imaging has demonstrated the sensitivity to track changes in dopamine D2/D3 binding during the course of DBS. These methods show great potential for providing insight into the neurochemical consequences of DBS.
measuring increases in blood flow at the stimulation site and sensory motor cortex, both correlated with stimulus frequency and stimulus amplitude. Other PET research has used $^{18}$F-FDG to measure regional metabolism during DBS. Fukuda et al. (2001) observed metabolic changes correlated with changes in the Unified Parkinson's Disease Rating Scale scores during pallidal DBS, while Hilker et al. (2004) found that DBS of the subthalamic nucleus activates the stimulated target while altering non-motor circuits. Furthermore, the experiments by Schlaepfer et al. (2007) showed that DBS of the nucleus accumbens alters metabolism in a distributed network of limbic and prefrontal brain regions.

To gain further insight into the physiological mechanisms of DBS, beyond regional perfusion and metabolism, neuroligand PET methods offer great potential to examine specific biochemical processes during DBS. The dopaminergic neuroreceptor system is of particular interest with DBS treatment of movement disorders. Several PET studies have been conducted to examine the dopaminergic system during DBS of the subthalamic nucleus: all three came to the conclusion that stimulation of the subthalamic nucleus does not significantly alter $^{11}$C-raclopride binding to D2/D3 receptors in the striatum (caudate and putamen) (Abosch et al., 2003; Hilker et al., 2003; Strafella et al., 2003). However, another study reported significant $^{11}$C-raclopride binding differences between pre- and post-DBS surgery groups, suggesting that DBS of the subthalamic nucleus reduces levodopa-induced fluctuations of synaptic dopamine levels in the striatum (Nimura et al., 2005). Despite its frequent usage in studying D2/D3 receptor binding, $^{11}$C-raclopride, has limited sensitivity for regions outside of the striatum due to low specific-to-nondisplaceable binding ratios. $^{18}$F-Fallypride is a high affinity D2/D3 radioligand (Mukherjee et al., 1999), providing favorable imaging characteristics in the extrastriatal regions of the brain and serves as a more useful radioligand for exploring system–wide changes in the dopaminergic network (Christian et al., 2000).

In this study, $^{18}$F-Fallypride was used to track changes in D2/D3 receptor binding as a result of DBS of the bed nucleus of the stria terminalis (BNST). Chronic stimulation of the BNST was explored as a mechanism for regulating the feeding habits of a naturally obese rhesus monkey. Previous work has shown that the BNST has projections to a variety of dopaminergic neurons (Fudge and Haber, 2001) and that lesions of limbic system components closely related to the BNST have lead to hyperphagia and obesity in rats (stria terminals (Rollins et al., 2006), posterior dorsal amygdala (King, 2006)). A reduction in D2/D3 receptor availability has been reported in obese humans, suggesting a deficiency in the modulating role of dopamine in motivational and reward systems in obese subjects (Wang et al., 2001). The BNST is implicated in modulating dopamine transmission in these systems (Norgren et al., 2006). We report on the utility of small animal PET for tracking neurochemical changes brought about by DBS.

2. Experimental procedures

2.1. DBS surgery and stimulation parameters

The experiment involved repeated scans of a male rhesus monkey (Macaca mulatta; 6 years, 15 kg). Experimental procedures were approved by the UW Institutional Animal Care and Use Committee. Magnetic resonance imaging (MRI) images of the brain were acquired before and after surgery; pre-surgery images were used for surgical planning, post-surgery images for aiding in determination of the stimulated structure. The DBS lead was surgically implanted in the right bed nucleus of the stria terminalis (BNST), corresponding to the coordinates of $x = 3.3$ mm, $y = 3.85$ mm (posterior to the anterior commissure), $z = 0.55$ mm (above AC–PC plane) of the Paxinos et al. (2000) rhesus atlas. Electrode location was later confirmed based upon histological sections following the experiments. After surgery, the animal was allowed to recover for 2 months before the acquisition of the post-surgery MRI and PET scans.

The electrode waveform generator (located in the thorax) was set to deliver electrical pulses to the two most distal contacts of the electrode with a pulse width of 60 μs. Frequency was set to either 130 or 50 Hz using a pulse amplitude of 0.5, 1.0 or 2.0 V. These stimulation parameters were chosen because they are commonly used clinical stimulation patterns. As stimulation frequency has been shown to influence effectiveness of clinical DBS treatment (Moro et al., 2002; Windels et al., 2003), stimulation using both 130 and 50 Hz was applied to investigate the frequency dependence on BNST stimulation response.

2.2. Timing of PET scans and stimulation parameter changes

The timing of PET scans relative to stimulation voltage and frequency is shown in Fig. 1a. The first 130 Hz (high frequency) stimulation period consisted of 4 weeks of constant stimulation at 0.5 V followed by 4 weeks with the system turned off, during which service was performed on the waveform generator. After the service period, the stimulators were turned on again at 130 Hz: 4 weeks at 1.0 V and another 4 weeks at 2.0 V. Subsequently, the stimulator was turned off for 4 weeks (washout period), followed by 12 weeks of stimulation at 50 Hz. This 12-week low-frequency period was split into three 4-week segments with the voltage set to 0.5, 1.0 and 2.0 V, respectively. Following the 50 Hz period, the stimulator remained off for a second washout period. All PET scans were acquired within 5 days of the end of each time period. The final PET scan was acquired 4.5 weeks after 50 Hz stimulation ended.

2.3. Animal care procedures

To allow for accurate measurements of food intake, the animal was individually housed at the Wisconsin National Primate Research Center. Other monkeys were in adjacent cages as to minimize environmental effects. The room was maintained at a temperature of 21 °C with a 12–hr light/dark cycle. The animal was allowed ad libitum access to food for 8 hr/day starting at 8:00 am and water was continuously available. The caloric intake and weight of the subject were recorded throughout the course of the experiments.

On the day of each scan the monkey was anesthetized with ketamine (15 mg/kg) and transported from its home cage to the PET scanner. There was a period of greater than 50 min between administration of ketamine and the injection of radiotracer to minimize the potential effects on radioligand binding. Though the effects of ketamine on D2/D3 availability are small, approximately 2% (Nader et al., 1999; Nader and Czoty, 2008), this timing was recorded to examine potential confounding effects. Upon arrival at the PET scanner, the monkey was intubated and maintained under isoflurane at 0.75–1.5% for the duration of the scan. The monkey was positioned face–down in a custom–made head–holder mounted to the scanner bed, yielding repositioning accuracy on the order of several millimeters between PET scans. Body temperature was maintained using a warm air heater and a continuous i.v. infusion of saline was administered to prevent dehydration. Heart rate, breathing rate, body temperature, and SpO2 were monitored and logged during the course of each PET scan.

2.4. PET scans

Following positioning, attenuation scans were acquired for 518 s using a Co–57 transmission point source. The dynamic emission PET
scan was initiated with the 30 s bolus i.v. infusion of $^{18}$F-fallypride (5.12 ± 0.24 mCi, injected mass 0.05 ± 0.02 µg/kg) and data was acquired for 2.5 h on a Concorde microPET P4 scanner (Tai et al., 2001). Emission data was acquired in list mode for the duration of the scan. Following the scan, the animal was removed from the anesthesia, allowed to recover, and returned to the housing facilities.

For the final PET scan, the stimulator was activated (130 Hz, 2.0 V) 110 min after the injection of $^{18}$F-fallypride and the scan was continued for an additional 70 min. This procedure was followed to investigate the possible acute effects of stimulator activation. The stimulator was turned off immediately following the emission scan. Toggling power to the stimulators was performed via a transmitter, out of the field of view of the scanner. No motion in the animal was evident during the activation period.

2.5. Image processing

An attenuation sinogram was created using the segmented transmission scan. Emission listmode data for $^{18}$F-fallypride were binned into 41 frames (frames × minutes per frame; 4 × 0.5, 5 × 1, 6 × 2, 5 × 3, 5 × 4, 15 × 6) making corrections for deadtime and randoms. The emission sinograms were reconstructed with filtered backprojection using a 0.3 cm⁻¹ Hann filter, zoom of 1.5×, and 128 × 128 × 63 voxel matrix size with voxel size of 1.26 mm × 1.26 mm × 1.21 mm. Corrections were made for attenuation, decay, scanner normalization, and scatter to create images with quantitative units of nCi/cc.

$^{18}$F-Fallypride binding was compared for all scans based on the measurement of the distribution volume ratio (DVR). Mathematically, DVR is described by the relationship, \[ \text{DVR} = \frac{f_{ND} B_{\text{avail}}}{K_D + 1}, \]
where $B_{\text{avail}}$ is the density of receptors available for radioligand binding, $f_{ND}$ is the free fraction in the nondisplaceable compartment, and $K_D$ is the apparent (in vivo) dissociation rate constant (Innis et al., 2007). Parametric images of DVR were created using the multi-linear reference tissue model described previously (Ichise et al., 2003), using $t^* = 29$ min. The cerebellum was used as a reference region, representing in vivo kinetics in a brain region of negligible specific binding. Cerebellum time activity curves were obtained by drawing five 8.8 mm-diameter circles on each of three slices on the posterior cerebellum. For the generation of voxel-based parametric images, each frame of the dynamic images was smoothed using a 3-voxel (3.8 mm) FWHM 3D Gaussian kernel.

To account for the variability in positioning of the head-holder, FSL flirt (Smith et al., 2004) was used to register all images to a common space as defined by the pre-surgery MRI. This procedure involved the following steps: (1) registering each integrated PET scan to the T1-weighted MRI, (2) creating a PET template from an average of the coregistered PET images, and (3) registering each PET to the template image. Based on centroid matching in the striatum, the images were estimated to have sub-voxel alignment accuracy, which is expected for intrasubject, intramodal registrations (Woods et al., 1998). The transformations were then applied to the $^{18}$F-fallypride DVR parametric images, putting all images (MRI, integrated PET and PET–DVR) into a common space, allowing for identical regions of interest (ROIs) to be applied to all images and facilitating voxel-based analyses. Similarly, to allow for comparison of time-activity curves, transformations and ROIs were applied to 4D dynamic PET data for both baseline and final scans.

ROIs were centrally placed within the boundaries of each region, defined on the MRI/PET coregistered images. The average value within each ROI is reported for DVR images as well as percent change from baseline. ROIs included (with volumes given) the striatum (0.16 cm³ each), putamen (0.24 cm³ each), substantia nigra (0.060 cm³), the inferior-medial region of the thalamus (thalamus, 0.030 cm³), and the prefrontal cortex (0.967 cm³). Percent change in DVR is reported relative to baseline: \[ \frac{\text{scan} - \text{baseline}}{\text{baseline}} \times 100\% \]. Voxel-based whole brain images of percent change from baseline DVR were created and examined for regional changes throughout the whole brain. Voxels with either the 'scan' or 'baseline' DVR value less than 1.0 were masked from these images. Assuming a constant ligand–receptor affinity, an increase in DVR (positive percent change) represents more available D2/D3 receptors, while a decrease in DVR (negative percent change) represents fewer available receptors.

To examine anterior–posterior changes within the striatum (investigated due to a visually apparent shift in binding in the 130 Hz study) we examined line profiles (3-voxel width) through the striatum on a single axial slice of the DVR images.

The ROI data for the acute DBS activation (final) study was analyzed using a modified model to detect the presence of time-dependent changes in radiotracer binding due to the activation of the electrode. For this experiment, the method described by Alpert and colleagues (Alpert et al., 2003) was used to account for time-varying changes in the kinetic parameters as expressed in the equation:

\[
C(t) = R C(t) + k_1 \int_0^t C(u)du - k_2 \frac{C(u)}{DVR} \int_0^t C(u)du - \gamma \int_0^t e^{-\gamma(u-T)} C(u)du,
\]

where $C(t)$ and $C(t)$ are the specific binding tissue region and reference region radioactivity concentrations, respectively, at time $t$. $R$ is the ratio of the delivery rate constants in the tissue and reference regions (K1/KND), $k_2$ is the tissue to plasma efflux constant in the tissue region. The $\gamma$ term represents the temporal change.
in the \( k_2/DVR \) parameter. The presence of endogenous neurotransmitter competition with the radioligand at the receptor sites would be reflected by a temporal change in DVR and is accounted for in the model with the \( e^{-\frac{t}{\tau}} \) term, at some time \( T \). For this experiment, we have chosen \( T \) at the time of stimulator activation. The decay constant \( \tau \) describes the rate at which this temporal variation discontinues and returns to baseline. Because the stimulator was activated for the remainder of the PET experiment, a value of \( \tau = 0 \) was chosen, thus keeping this term constant (rather than a decaying exponential). The baseline period (110 min) of the PET experiment provides sufficient data for estimating the parameters \( R, k_2 \) and \( k_2/DVR \) and the post-activation data (110–180 min) yields information for measuring \( y \). An increase in competing endogenous dopamine would result in \( y > 0 \) whereas a decrease would result in \( y < 0 \). Significance of the \( y \) parameter was based upon the \( t \)-statistic calculated as \( y/\sigma_y \); a threshold of \( p < 0.05 \) was selected as significant.

To serve as a comparison with the other PET scans, parametric images of \(^{18}\text{F-fallypride DVR} \) were also created from this study based on the post hoc assumption that no DBS-induced change in binding occurred (i.e. null hypothesis that \( y = 0 \)). For this calculation, the identical model as used for the other PET scans was applied, using only the first 2.5 h of dynamic data for the estimation of DVR.

3. Results

During the course of the experiment there was an increase in the weight of the animal. The initial weight was 14.78 kg and final weight was 16.33 kg. Fig. 1b shows the time course of weight gain during the experiments. Pre-surgery baseline average daily caloric intake was 431 kcal/day. During stimulation periods daily caloric intake was 677 kcal/day (130 Hz) and 515 kcal/day (50 Hz). Washout and post-stimulation period averages were 579 kcal/day and 575 kcal/day, respectively.

Also shown in Fig. 1b is the change in striatal \(^{18}\text{F-fallypride DVR} \) in relation to weight gain. ROI analyses revealed significant increases in DVR in all regions during both high and low frequency stimulation (Fig. 2) The striatal regions showed large increases while the extrastriatal regions showed modest to large increases during stimulation periods. For both washout and final scans (stimulators off), DVR values returned to near baseline DVR values; with the exception of the substantia nigra during the washout period (\(-17\%\)) and both the PFC and thalamus post-stimulation (\(-20\%\)). Comparisons of the left and right striatal regions revealed no significant asymmetries in DVR due to the unilateral stimulation.

A closer examination of the striatal region suggests a redistribution of available receptors within the striatum (Fig. 3). For 130 Hz stimulation, increases in DVR were greater in the anterior striatum than posterior, especially on the left side, resulting in a visually apparent shift of the region with highest DVR. The shift in binding is also illustrated in Fig. 4, where the long-axis profile reveals a bimodal shape for the 130 Hz scan.

The isocontours in Fig. 3 reveal the same pattern as seen in the ROI analysis of the caudate and putamen, with an increase in \(^{18}\text{F-fallypride DVR} \) for both stimulation scans and a return to baseline DVR values during both the washout and post-stimulation periods. Fig. 5 highlights DBS-induced increases in DVR in the substantia nigra.
nigra region; showing a similar trend as seen in the striatum with changes most profound during the stimulation scans.

Time-activity curves of $^{18}$F-fallypride in the caudate, putamen and substantia nigra for both baseline and the final scan are shown in Fig. 6. Kinetic analysis with the time-dependent term revealed no significance in the $\gamma$ parameter, suggesting that acute changes in $^{18}$F-fallypride binding are not present.

4. Discussion

There is a paucity of knowledge regarding the effect of DBS on the neuroreceptor systems in the brain. In this work, we chose to examine the dopamine system of a nonhuman primate due to its functional connections to the bed nucleus of the stria terminalis and the implicated role of dopamine in obesity and feeding patterns (Wang et al., 2002). $^{18}$F-Fallypride was used as the PET radioligand due to its high selectivity for the D2/D3 receptors, favorable binding characteristics for measuring extrastriatal binding, and its suitability for translation to human studies. Considering the relatively non-invasive nature of the scanning protocol and that the stimulation parameters used in this experiment are similar to those used clinically, it is within reason that the methods used in this study could also be applied to humans with DBS electrodes in other brain regions.

Throughout both the striatal and extrastriatal regions of the brain we report large changes in $^{18}$F-fallypride binding resulting from chronic simulation of the BNST. Because these studies were performed in a single animal, it is not possible to report statistical significance to the measured changes. However, comparison to intrasubject test–retest variability of 10% with $^{18}$F-fallypride DVR in nonhuman primates (Christian et al., 2000) suggests that reported DVR changes in excess of 20% have a high likelihood of being due to the effects of DBS.

In research applications with reversibly bound PET neurligands measuring group or drug effects, a change in DVR can be interpreted as (i) a change in the number of available receptors, $B_{\text{avail}}$, (ii) a change in the apparent dissociation rate constant ($K_D$) via a change in the concentration of competing endogenous neurotransmitter, or (iii) a combination of both (for review, see Laruelle, 2000). The nature of DBS in modulating neuronal firing combined with previous in vivo microdialysis work showing DBS modulation of neurotransmitter systems provides evidence that changes in DVR likely reflect alterations in competing endogenous neurotransmitter concentration (McIntyre et al., 2004).

Of great interest for this work are potential decreases in endogenous dopamine caused by DBS-induced inhibition of downstream circuits. A reduction in endogenous dopamine would produce more radiotracer binding and a positive change in DVR. Using pharmacologically-induced dopamine depletion, increases in bind-
ing potential (DVR-1) of 30–50% have been reported in nonhuman primates (Dewey et al., 1992; Ginovart et al., 1997), serving as an upper limit to changes in DVR due to competing endogenous dopamine. Because the results we observed were of this magnitude, we hypothesize that the reported changes are due to reduced competing dopamine, rather than an increase in the number of receptors.

Despite coming from only one animal, the changes in D2/D3 binding were profound, so we speculate on the cause of the observed changes. The alterations in the D2/D3 binding are likely to be caused by stimulation of the BNST, which has an influence over a variety of dopaminergic neurons, including a high density of projections to the substantia nigra (Fudge and Haber, 2001). If these projections were inhibited by the DBS, dopamine production of nigro-striatal neurons could have been shut down, leading to a decrease in striatal dopamine and the observed increases in DVR. Despite the large apparent decrease in striatal dopamine, the monkey did not show any change in control of movements. In the substantia nigra, the lower change in DVR could be the result of being under direct influence from the stimulated neurons. It is also possible that the D2/D3 autoreceptors in the substantia nigra (Tepper and Diana, 2002) are not as sensitive to endogenous dopamine as synaptic receptors in the other regions. Since DBS cannot deliver a uniform electric field across the entire target nucleus, different subregions of the BNST may have been stimulated to different degrees (McIntyre et al., 2004). This differential stimulation pattern may have been relayed through the substantia nigra to the striatum, leading to the observed change in striatal binding distribution during 130 Hz stimulation. It should not be expected that changes would be constrained to only the regions under direct stimulation or within 1–2 synapses of stimulated neurons, but also to any regions that are part of a larger neural circuit containing the nuclei or axons under direct stimulation (Montgomery and Gale, 2008). These higher degree connections may be responsible for the changes seen in regions such as the prefrontal cortex and the thalamus.

The final study did not detect any significant acute changes in \( {18}F \)-fallypride binding due to changes in endogenous dopamine. Visual inspection of the caudate and putamen time activity curves (Fig. 6) shows a subtle departure from the corresponding baseline data beginning at the DBS activation. However, the time-dependent term, \( \gamma \), in the kinetic model could not sufficiently separate changes in specific binding from changes in radioligand delivery (via blood flow) due to the high correlation between parameters (Woods et al., 1998). While the methods used here did not detect a significant change, the prospects of measuring acute changes in dopamine release induced by DBS remain intriguing and warrant further investigation using methods with improved detection sensitivity, possibly characterizing both changes in magnitude and release timing (Morris et al., 2008).

Previous PET studies of neuropeptide systems have not been able to demonstrate a significant change in \( {11}C \)-raclopride binding in humans as a result of DBS (Abosch et al., 2003; Hilker et al., 2003; Strafella et al., 2003). This lack of observed effect points to the limitations in conducting such experiments in subjects with severely degenerated nigro-striatal innervation and with limited ability to evoke a dopamine response. In this present study, all neurons under the influence of DBS are assumed to be healthy, functioning neurons with the capacity to modulate dopamine release, yielding the potential for measuring large changes in \( {18}F \)-fallypride binding. Furthermore, by choosing a high-affinity D2/D3 antagonist for the radiotracer, we were able to examine regions outside the D2/D3 receptor rich striatum, where the effects of DBS may play a prominent role.

Also of considerable interest is the positive correlation of striatal DVR with weight gain. While the monkey did gain weight over the period of the whole study, it was during the stimulation periods that most of the weight was gained. This was also the period of the largest increases in DVR. There was less weight gain during the washout and post-stimulation periods, both of which correspond to a return of DVR to baseline values. This observation is in line with previous findings that report a normalization of weight in obese mice following treatment with a dopamine D1/D2 agonist, SKF-38393 (Bina and Cincotta, 2000), so it follows that the reduction of endogenous dopamine reported herein may have played a role in the monkey's weight gain.

There is a wide range of additional studies that could be acquired on animals with DBS to provide a further understanding of the D2/D3 dopaminergic system changes during the DBS treatment. These include measurement at a variety of stimulation amplitudes and over a wider range of stimulation frequencies. Also of great interest would be a correlation of behavioral data with temporal changes in D2/D3 receptor binding following the initiation of stimulation and after its termination, possibly providing insight into the receptor-dependent thresholds of DBS therapeutic effectiveness. Further studies are also warranted to uncouple the measurements of receptor density (\( B_{\text{max}} \)) and competing endogenous neurotransmitter (\( K_{D} \)) through the use of a multiple-injection experiment.
(Christian et al., 2004). Such knowledge would aid in the understanding of changes at dopaminergic synapses during DBS which could lead to more effective clinical uses of DBS or as an inspiration for new experimental applications for DBS.

5. Conclusion

PET neuroigand imaging using $^{18}$F-fallypride has demonstrated the sensitivity to track changes in dopamine D2/D3 binding during the course of deep brain stimulation of the BNST. The results show a profound change in $^{18}$F-fallypride DVR due to stimulation of both 130 Hz and 50 Hz and a return to baseline DVR values when the stimulator was turned off during both washout and after stimulation. These methods show great potential for providing insight into the neurochemical mechanisms of DBS, and warrant further use of neulrigand PET imaging in deep brain stimulation research.

Acknowledgements

The authors would like to thank the following for their contributions to this research, making it possible: Wendy Newton and Vicky Carter for nonhuman primate handling and scheduling; Terry Oakes for help in image processing; as well as Dr. Erwin Montgomery and Dr. Ankur Garg for technical discussions and the journal reviewers. This material is based upon work supported in part by the Office of Research and Development, Rehabilitation R&D Service, Department of Veterans Affairs. N.T.V. was supported by NIH training grant T90 DK070079. The DBS electrodes were donated by Medtronic of Minneapolis, MN.

References


Rollins BL, Stines SG, King BM. Role of stria terminalis in food intake and body weight in rats. Physiol Behav 2003; 89: 139–45.


